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Cellular Automata

A cellular automata is an array of identical cells

Each takes one of a finite set of states

Evolves by iteration of a global evolution function

Defined over a local neighbourhood of cells, shift 
invariant

Applied synchronously across grid
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Quantum Computing

Green and Altenkirch

2 Reversible computation

We model reversible computations by a groupoid FxC�
, that is for every

morphism ψ ∈ FxC�
(a, b) there is an inverse ψ−1 ∈ FxC�

(b, a) such that

ψ,ψ−1
are an isomorphism. We assume that the groupoid is strict, i.e. that

any isomorphic objects are equal. This entails that FxC�
(a, b) is empty, if

a �= b, consequently we denote homsets by FxC�
a = FxC�

(a, a). We also

assume that FxC�
has a strict monoidal structure I,⊗ which corresponds to

parallel composition of computations and a special object of Booleans,denoted

by N2. Since we are only interested in objects which can be generated from

I,N2,⊗ we can use natural numbers a ∈ N to denote the object 2
a
. Hence we

have that I = 0, N2 = 1 and a⊗ b = a+ b. We write [a] = {i ∈ N | i < a} for

the initial segment of N.
We characterise the morphisms, i.e. circuits, in FxC�

a inductively and

also give the inverses:

wires Given a bijection on initial segments φ : [a] � [a] we write wiresφ ∈
FxC�

a for the associated rewiring. For example, the rewiring denoted

schematically as

|0� H •

|1� R

x0
��

�� x1
x1

����
��

�� x2
x2

���� x0

would have φ(0) = 2, φ(1) = 0, and φ(2) = 1. The existence of wires follows

from the strict monoidal structure, with the identity (ida) being a special

case of wires.

sequential composition combines two circuits of equal size (i.e. with the

same number of wires) in sequence. That is, given ψ,φ ∈ FxC�
a we con-

struct φ ◦ ψ ∈ FxC�
a.

ψ φ
� � � ��

�

�

�
� � � �

we can construct the inverse using φ−1
and ψ−1

to give ψ−1 ◦ φ−1
.

φ−1 ψ−1

� � � � � � ��

�

�

�
� � � � � � �

parallel composition combines any two circuits in parallel, and can be

thought of as the tensor product. The size of the new circuit constructed

is equal to the sum of the sizes of the original two circuits. That is, given

ψ ∈ FxC�
a and φ ∈ FxC�

b we can construct ψ ⊗ φ ∈ FxC�
(a⊗ b).

ψ

φ

� ��

�

�

�

�

�

�

�
� �

3

Universal quantum circuits:

Hadamard, Rotation, Controlled-Rotation

Quantum bits: 

3. reversible quantum computation 38

operator written in this way becomes:

H |0� =
1√
2

|0�+
1√
2

|1� = |+�

H |1� =
1√
2

|0� − 1√
2

|1� = |−�

The action of the Hadamard transformation is to, in each case, produce an equal

quantum superposition, but with a difference in phase. The negative phase in the

case of H |1� does not change the measurement probabilities, as these are given by the

absolute square of the amplitude. Note that it is clear from this representation that

the Hadamard operation maps the orthogonal spaces |0� and |1� to the orthogonal

spaces |+� and |−�. Preserving orthogonality is a property of all unitary operations,

otherwise they would not be sufficient to model quantum computation. More gener-

ally, unitary operations preserve the inner-product:

�v|w� = �Uv|Uw� ∈ C

and the inner-product can be thought of as a measure of orthogonality: if �v|w� = 0

then v and w are orthogonal (v ⊥ w).

The phase difference between the two possible outcomes formed on application

of the Hadamard transform to the two basis states means that applying the trans-

form again restores the original quantum state. This is evident from multiplying the

Hadamard matrix with itself, which gives the identity matrix:

H
2

=

�
1√
2

�
1 1

1 −1

��2

=
1

2

�
2 0

0 2

�
=

�
1 0

0 1

�
= I

Four other common one-qubit unitary rotations, so called because they rotate a

vector about the Bloch sphere, are the Pauli matrices. These are:

I =

�
1 0

0 1

�
; X =

�
0 1

1 0

�
; Y =

�
0 −i

i 0

�
; Z =

�
1 0

0 −1

�
(3.4)

Unitary transformations can be combined using the tensor product ⊗ to give a

single transform which acts on the state space spanned by both operators. With
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of two qubits cannot be expressed as the tensor product of single-qubit states. Clas-

sical systems, conversely, can always be decomposed into the Cartesian product of

single-bit states. The EPR state presented in this way is sometimes referred to as

the Bell state, with the EPR state then defined as an anti-correlated pair of qubits

instead, which is closer to the original statement of the EPR thought experiment.

In general, a system composed of n quantum bits can exist in 2
n

possible states.

Unfortunately there is no simple geometric interpretation, such as the Bloch sphere,

for more than one qubit, which makes them initially difficult to understand concep-

tually.

3.1.3 Operations on quantum states

The evolution of a quantum system can be described by a unitary transformation

(operator). If the state of a qubit is represented as a complex-valued column vector

(as above), then a unitary operator can be represented as a complex-valued matrix

U , such that U
−1

= U
†
, where U

†
is the conjugate-transpose, or adjoint, of U , where

U is a unitary matrix:

U
†
=

�
u00 u01

u10 u11

�†

=

�
u
∗
00 u

∗
01

u
∗
10 u

∗
11

�T

=

�
u
∗
00 u

∗
10

u
∗
01 u

∗
11

�

The description of the behaviour of the operator U on a state is given by matrix

multiplication:

U |φ� =

�
u00 u01

u10 u11

��
α

β

�
=

�
u00α + u01β

u10α + u11β

�

A common unitary operator used on quantum states is the Hadamard operator, H ,

which is sometimes called the “square-root of not” (despite the fact that H
2 �= not).

The Hadamard operator’s action is given by the matrix:

H =
1√
2

�
1 1

1 −1

�
(3.3)

A unitary transformation can also be fully described by its action on the basis states,

which can extended linearly to the entire space the operator acts on. The Hadamard

|ϕ� = α|0�+ β|1�, |α|2 + |β|2 = 1, α,β ∈ C
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Introduction

A simple Partitioned Quantum Cellular Automata

Simulates any other PQCA in a topology preserving 
manner

Able to simulate multiple iterations.

Intrinsically universal

Construction presented in 2D
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Partitioned QCA
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Flattening a PQCA
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Flattening a PQCA
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Signals

Cells: Blank, Qubit (0 or 1) or a Barrier

Signals carry qubits

Diagonal propagation

6 P. Arrighi and J. Grattage

PQCA upon these incoming bunched wires, as shown in Fig. 2 (right). This
completes the description of the overall scheme according to which a PQCA

that is capable of implementing wires and gates is also capable of intrinsically

simulating any PQCA, and hence any QCA. A particular PQCA that supports

these wires and gates can now be constructed.

2.3 Barriers and signals carrying qubits

Classical CA studies often refer to ‘signals’ without an explicit definition. In this

context, a signal refers to the state of a cell which may move to a neighbouring

cell consistently, from one step to another, by the evolution of the CA. Therefore

a signal would appear as a line in the space-time diagram of the CA. These

lines need to be implemented as signal redirections. A 2D solution is presented

here, but this scheme can easily be extended to higher dimensions. Each cell

has four possible basis states: empty (�), holding a qubit signal (0 or 1), or a

barrier (�). The scattering unitary U of the universal PQCA acts on 2× 2 cell

neighbourhoods.

Signals encode qubits which can travel diagonally across the 2D space (NE,

SE, SW, or NW). Barriers do not move, while signals move in the obvious way

if unobstructed, as there is only one choice for any signal in any square of four

cells. Hence the basic movements of signals are given by the following four rules:

���� s

�
�→

����
s

�
,

����
s

�
�→

���� s

�
,

����
s

�
�→

���� s

�
,

���� s

�
�→

����
s

�
.

where s ∈ {0, 1} denotes a signal, and blank cells are empty.

The way to interpret the four above rules in terms of the scattering unitary U is

just case-by-case definition, i.e. they show that U

���� s

�
=

����
s

�
. Moreover,

each rule can be obtained as a rotation of another, hence by stating that the

U -defined PQCA is isotropic the first rule above suffices. This convention will

be used throughout.

The ability to redirect signals is achieved by ‘bouncing’ them off walls con-

structed from two barriers arranged either horizontally or vertically:

����
s

�
�→

���� s

�
.

where s again denotes the signal and the shaded cells denote the barriers which

causes the signal to change direction. If there is only one barrier present in the

four cell square being operated on then the signal simply propagates as normal

and is not deflected: ���� s

�
�→

����
s

�
.

s ∈ {0, 1}
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Barriers

Two barriers: Signal redirection

One barrier: No effect
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A Simple n-Dimensional Intrinsically Universal QCA 7

Using only these basic rules of signal propagation and signal reflection from
barrier walls, signal delay (Fig. 3) and signal swapping (Fig. 4) tiles can be
constructed. All of the rules presented so far are permutations of some of the
base elements of the vector space generated by

� ����
w x
y z

��

w,x,y,z∈{�,0,1,�}

therefore U is indeed unitary on the subspace upon which its action has so far
been described.

Fig. 3. The ‘identity circuit’ tile, an 8 × 14 tile taking 24 time-steps, made by
repeatedly bouncing the signal from walls to slow its movement through the tile.
The dotted line gives the signal trajectory, with the arrow showing the exit point
and direction of signal propagation. The bold lines show the tile boundary.

Fig. 4. The ‘swap circuit’ tile, a 16× 14 tile, where both input signals are per-
muted and exit synchronously after 24 time-steps. As the first signal (bottom
left) is initially delayed, there is no interaction.
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Identity (Delay) Circuit

8 x 14 tile

24 time steps 

Tuesday, 19 October, 2010



Swap Circuit

16 x 14 tile

24 time steps 
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Swap Circuit

16 x 14 tile

24 time steps 
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Quantum Gates

Hadamard operation

8 P. Arrighi and J. Grattage

2.4 Gates

To allow a universal set of gates to be implemented by the PQCA, certain
combinations of signals and barriers can be assigned special importance. The
Hadamard operation on a single qubit-carrying signal can be implemented by
interpreting a signal passing through a diagonally oriented wall, analogous to a
semitransparent barrier in physics. This has the action defined by the following
rule: ���� 0

�
�→ 1√

2

����
0

�
+

1√
2

����
1

�

���� 1

�
�→ 1√

2

����
0

�
− 1√

2

����
1

�

This implements the Hadamard operation, creating a superposition of configu-
rations with appropriate phases. Using this construction a Hadamard tile can
be constructed (Fig. 5) by simply adding a semitransparent barrier to the end
of the previously defined delay (identity) tile (Fig. 3). A way of encoding two

Fig. 5. The ‘Hadamard gate’ tile applies the Hadamard operation to the input
signal. It is a modification of the identity circuit tile, with a diagonal (semitrans-
parent) barrier added at the end which performs the Hadamard operation.

qubit gates in this system is to consider that two signals which cross paths in-
teract with one another. The controlled-R(π4 ) operation can be implemented by
considering signals that cross each other as interacting only if they are both 1,
in which case a global phase of e

iπ
4 is applied. Otherwise the signals continue as

normal. This behaviour is defined by the following rule:

����
1
1

�
�→ e

iπ
4

����
1
1

�
,

����
x
y

�
�→

����
y
x

�
otherwise

where x, y ∈ {0, 1}. This signal interaction which induces a global phase change
allows the definition of both a two signal controlled-R(π4 ) tile (Fig. 6) and a
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Hadamard operation
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signal. It is a modification of the identity circuit tile, with a diagonal (semitrans-
parent) barrier added at the end which performs the Hadamard operation.

qubit gates in this system is to consider that two signals which cross paths in-
teract with one another. The controlled-R(π4 ) operation can be implemented by
considering signals that cross each other as interacting only if they are both 1,
in which case a global phase of e

iπ
4 is applied. Otherwise the signals continue as

normal. This behaviour is defined by the following rule:
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where x, y ∈ {0, 1}. This signal interaction which induces a global phase change
allows the definition of both a two signal controlled-R(π4 ) tile (Fig. 6) and a
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2.4 Gates

To allow a universal set of gates to be implemented by the PQCA, certain
combinations of signals and barriers can be assigned special importance. The
Hadamard operation on a single qubit-carrying signal can be implemented by
interpreting a signal passing through a diagonally oriented wall, analogous to a
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Used to create two circuits: 

Controlled-R(π/4) 

R(π/4)
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single signal R(
π
4 ) operation tile (Fig. 7). These rules are simply a permutation

and phase change of base elements of the form:

� ����
x

y

��

x,y∈{0,1}

(and their rotations), therefore U is a unitary operation on the subspace upon

which its action has so far been described. Wherever U has not yet been defined,

it is the identity. Hence U is unitary.

2.5 Circuits: combining gates

A signal is given an 8× 14 tile (16× 14 for two signal operations) in which the

action is encoded. The signals enter each tile at the fifth cell from the left, and

propagate diagonally NE. Each time step finds the tile shifted one cell to the

right to match this diagonal movement, giving a diagonal tile. The signal exits

the tile 14 cells North and East of where it entered. This allows these tiles to

be composed in parallel and sequentially with the only other requirement being

that the signal exits at the appropriate point, i.e. the fifth cell along the tile,

after 24 time-steps. This ensures that all signals are synchronised as in Fig. 2

(right), allowing larger circuits to be built from these elementary tiles by simply

plugging them together. Non-contiguous gates can also be wired together using

appropriate wall constructions to redirect and delay signals so that they are

correctly synchronised.

The implemented set of quantum gates, the identity, Hadamard, swap, R(
π
4 )

and controlled-R(
π
4 ), gives a universal set. Indeed the standard set of cNot, H,

R(
π
4 ) can be recovered as follows:

cNot |ψ� = (I⊗H)(cR(π/4))4(I⊗H) |ψ�

where cR(
π
4 )

4
denotes four applications of the controlled-R(

π
4 ) gate, giving the

controlled-Phase operation.

3 Conclusion

This paper presents a simple PQCA which is capable of simulating all other

PQCA, preserving the topology of the simulated PQCA. This means that the

initial configuration and the forward evolution of any PQCA can be encoded

within the initial configuration of this PQCA, with each simulated cell encoded as

a group of adjacent cells in the PQCA, i.e. intrinsic simulation. The construction

in section 2 is given in two-dimensions, which can be seen to generalise to n > 1-

dimensions. The main, formal result of this work can therefore be stated as:

Claim 1 There exists an n-dimensional U -defined PQCA, G, which is an in-
trinsically universal PQCA. Let H be a n-dimensional V -defined PQCA such
that V can be expressed as a quantum circuit C made of gates from the set
Hadamard, Cnot, and R(

π
4 ). Then G is able to intrinsically simulate H.

Tuesday, 19 October, 2010



Controlled-R(π/4)

8 P. Arrighi and J. Grattage

2.4 Gates

To allow a universal set of gates to be implemented by the PQCA, certain
combinations of signals and barriers can be assigned special importance. The
Hadamard operation on a single qubit-carrying signal can be implemented by
interpreting a signal passing through a diagonally oriented wall, analogous to a
semitransparent barrier in physics. This has the action defined by the following
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This implements the Hadamard operation, creating a superposition of configu-
rations with appropriate phases. Using this construction a Hadamard tile can
be constructed (Fig. 5) by simply adding a semitransparent barrier to the end
of the previously defined delay (identity) tile (Fig. 3). A way of encoding two

Fig. 5. The ‘Hadamard gate’ tile applies the Hadamard operation to the input
signal. It is a modification of the identity circuit tile, with a diagonal (semitrans-
parent) barrier added at the end which performs the Hadamard operation.

qubit gates in this system is to consider that two signals which cross paths in-
teract with one another. The controlled-R(π4 ) operation can be implemented by
considering signals that cross each other as interacting only if they are both 1,
in which case a global phase of e

iπ
4 is applied. Otherwise the signals continue as

normal. This behaviour is defined by the following rule:
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where x, y ∈ {0, 1}. This signal interaction which induces a global phase change
allows the definition of both a two signal controlled-R(π4 ) tile (Fig. 6) and a
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R(π/4) gate

Auxiliary signal, set to 1

Loops every 6 time-steps

|0� → |0�
|1� → e

iπ
4 |1�
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Auxiliary signal, set to 1

Loops every 6 time-steps

|0� → |0�
|1� → e

iπ
4 |1�
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Circuits and wires

Gates are modular, so can be combined.

Each qubit occupies an 8x14 (diagonal) tile.

Hadamard, R(π/4), delay are primitive.

Controlled-Not from Controlled-R(π/4):

10 P. Arrighi and J. Grattage

single signal R(
π
4 ) operation tile (Fig. 7). These rules are simply a permutation

and phase change of base elements of the form:
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x

y

��

x,y∈{0,1}

(and their rotations), therefore U is a unitary operation on the subspace upon

which its action has so far been described. Wherever U has not yet been defined,

it is the identity. Hence U is unitary.

2.5 Circuits: combining gates

A signal is given an 8× 14 tile (16× 14 for two signal operations) in which the

action is encoded. The signals enter each tile at the fifth cell from the left, and

propagate diagonally NE. Each time step finds the tile shifted one cell to the

right to match this diagonal movement, giving a diagonal tile. The signal exits

the tile 14 cells North and East of where it entered. This allows these tiles to

be composed in parallel and sequentially with the only other requirement being

that the signal exits at the appropriate point, i.e. the fifth cell along the tile,

after 24 time-steps. This ensures that all signals are synchronised as in Fig. 2

(right), allowing larger circuits to be built from these elementary tiles by simply

plugging them together. Non-contiguous gates can also be wired together using

appropriate wall constructions to redirect and delay signals so that they are

correctly synchronised.

The implemented set of quantum gates, the identity, Hadamard, swap, R(
π
4 )

and controlled-R(
π
4 ), gives a universal set. Indeed the standard set of cNot, H,

R(
π
4 ) can be recovered as follows:

cNot |ψ� = (I⊗H)(cR(π/4))4(I⊗H) |ψ�

where cR(
π
4 )

4
denotes four applications of the controlled-R(

π
4 ) gate, giving the

controlled-Phase operation.

3 Conclusion

This paper presents a simple PQCA which is capable of simulating all other

PQCA, preserving the topology of the simulated PQCA. This means that the

initial configuration and the forward evolution of any PQCA can be encoded

within the initial configuration of this PQCA, with each simulated cell encoded as

a group of adjacent cells in the PQCA, i.e. intrinsic simulation. The construction

in section 2 is given in two-dimensions, which can be seen to generalise to n > 1-

dimensions. The main, formal result of this work can therefore be stated as:

Claim 1 There exists an n-dimensional U -defined PQCA, G, which is an in-
trinsically universal PQCA. Let H be a n-dimensional V -defined PQCA such
that V can be expressed as a quantum circuit C made of gates from the set
Hadamard, Cnot, and R(

π
4 ). Then G is able to intrinsically simulate H.

Barriers and delays complete wiring.
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Minimal 3D PQCA

Binary 3D PQCA

More complicated, but seems interesting
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Conclusion

A simple PQCA capable of simulating all other QCA 
in a topology preserving manner. 

Simple, but not minimal.

Step towards a universal physical phenomenon?
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